
PB96-152210
NIKk
Information is our business.

NEWTON'S METHOD FOR FRACTIONAL
COMBINATORIAL OPTIMIZATION

STANFORD UNIV., CA
m& \J0EW**-

^p^iSWoä

JAN 92 19970409 020

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

yuiäi'iiiiüi'iUJM ä-j'ATJtiMU'n A

Approved for public release?
Distribution Unlimited

REPORT DOCUMENTATION PAGE form Aflpwd
OMf Ma. 070*419$

1. ASSS*^ 12. REPORT DATS S. REPORT TYPE ANO DATES' COVERED"

«. TITLE ANO SUI7ITU

* Newton's Method for fractional Combinatorial Optimization

A. AUTHOR»)

Tomasz Radzik

7. PERFORMMG ORGANIZATION NAMI(S) ANO ADDRCSSiEsT

* Computer Science Department
Stanford University
Stanford, CA 94305

S. FUNDMG NUMHRS

PB96-152210

l PERFORMMG ORGANIZATION
REPORT NUMBER

STAN-CS-92-1406

fl. SPONSORING /MONITORING AGENCY NAME(S) AND AOORESStES)

ONE
A.

Arlington, VA 22217

10. SPONSORMG/MONITORMG
AGENCY REPORT NUMRER

11. SUPPLEMENTARY NOTES

12a. OBTMMJTION/AVAftAMUTY STATEMENT IZfc. OtSTRIMJTION COOE

11. ASSTRACT (ManNMMt200 worm

We consider Newton'i method for the linear fractional combinatorial opti-
mization. First we show a strongly polynomial bound on the number of
iterations for the general case. Then we consider the transshipment prob-
lem when the wi»™rmtn arc cost is being minimized. This problem can be
reduced to the t^»*"™"™ mean-weight cut problem, which is a special case
of the linear fractional combinatorial optimization. We prove that Newton's
method runs in 0{m) iterations far the maximum mean-weight cut prob-
lem. One iteration is dominated by the maximum flow computation, so the
overall running time is Ö(m*n). The previous fastest algorithm is based on
Meggido's parametric search method and runs in Ö(nzm) time.

14. SUSJlcf TERMS

17. SECURITY CLASSIFICATION
OF REPORT

II. SECURITY CLASSIFICATION
OF THIS PAGE

IS. SECURITY CLASSIFICATION
OF ABSTRACT

IS. NUMBER OF PAGES

1ft. PRICE COOE

20. LIMITATION OF ASSTRACT

NSN 7540-01-280-5500
Standard ^orm 291 <*«v 2-89)

BIBLIOGRAPHIC INFORMATION

PB96-152210

Report Nos: STAN-CS-92-1406

Title: Newton's Method for Fractional Combinatorial Optimization.

Date: Jan 92

Authors: T. Radzik.

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.

Sponsoring Organization: *0ffice of Naval Research, Arlington, VA.*National Science
hounaation, wasmngton, DC.

Contract Nos: NSF-CCR-8858097

NTIS Field/Group Codes: 72E (Operations Research)

Price: PC A03/MF A01

Availability: Available from the National Technical Information Service, Springfield,
VA. 22161

Number of Pages: 25p

Keywords: Combinatorial analysis, optimization, *Newton methods, Iteration,
Algontnms, .Run time (Computers), Transshipment networks.

Abstract: We consider Newton's method for the linear fractional combinatorial
optimization. First we show a strongly polynomial bound on the number of iterations
for the general case. Then we consider the transshipment problem when the maximum arc
cost is being minimized. This problem can be reduced to the maximum mean-weight cut
problem, which is a special case of the linear fractional combinatorial optimization.
We prove that Newton's method runs in 0(m) iterations for the maximum mean-weight cut
problem. One iteration is dominated by the maximum flow computation, so the overall
running time is 0(m squared n). The previous fastest algorithm is based on Meggido's
parametric search method and runs in optimum 0(n cubed m) time.

January 1992 Report No. STAN-CS-92-1406

PB96-152210

Newton's Method for Fractional Combinatorial Optimization

by

Tomasz Radzik

Department of Computer Science

Stanford University

Stanford, California 94305

REPRODUCED BY: NTIS.
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

Newton's Method for Fractional Combinatorial Optimization

Tomasz Radzik *

Abstract

We consider Newton's method for the linear fractional combinatorial opti-
mization. First we show a strongly polynomial bound on the number of itera-
tions for the general case. Then we consider the transshipment problem when
the maximum arc cost is being minimized. This problem can be reduced to
the maximum mean-weight cut problem, which is a special case of the linear
fractional combinatorial optimization. We prove that Newton's method runs
in 0{m) iterations for the maximum mean-weight cut problem. One iteration
is dominated by the maximum flow computation, so the overall running time
is.Ö(m2n). The previous fastest algorithm is based on Meggido's parametric
search method and runs in 0(nsm) time.

•Computer Science Department, Stanford University, Stanford, CA 94305. Research partially supported
by NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T and DEC,
and ONR Young Investigator Award N00014-91-J-1855.

1 Introduction

A linear fractional combinatorial optimization (LFCO) problem is defined as follows. A

specification of a system X C {0,1}P and two vectors (aua2,.. -,a?), {h,b2,...,bp) G Rp

are given.

Maximize : —7-7 > suDjeci to \x\,x2,.. .,*p) e /i-
6l*l + t>22;2 + 1" ^P

* belongs to some specified class of systems. Vector (zi,22,.. .,sP) € #, represents some

structure, a subset of some underlying set of p objects, a and b{ are the cost and fte

weight of object i. £f=I «i*. H=i ***» «"* (Al ^O/CELi W «" ^ cos<< «^
and mean-weight cost of the structure represented by (xux2,..., xp). In an LFCO problem

we are asked to compute the maximum mean-weight cost of a structure in X. We also want

to find a structure which has the maximum mean-weight cost.

For example the maximum mean-weight spanning tree problem is an LFCO problem.

In this problem the class of systems is the class of sets of all spanning trees in graphs:

{{TI T - spanning tree in G} \ G - graph}.

The description of graph G = (V,E) is the specification of XG C {0, l}m, the set of.(the

characteristic vectors of) all spanning trees in G (m = \E\). The underlying set of objects

for XG is the set of edges in G. Vector (xi, za, -.., as«) € XG represents spanning tree T in

G such that edge i belongs to T iff x; = 1. Numbers ax, a2,..., a™ are the costs of edges and

bub2,...,bm are the weights. The task is to find a spanning tree in G with the maximum

mean-weight cost.

We will use bold letters to denote vectors and corresponding italic letters to denote

their coordinates, for example x = (xi, x2,..., xP). For two vectors a and x of equal length,

ax denotes the scalar product of a and x, i.e., ax = 01*1 + a2x2 + ••••+ OpXp. With this

notation an LFCO problem is to

(pi) maximize —, subject to x € X.

We assume that bx > 0 for all x 6 X, and ax > 0 for some x € X. Problem (PI) can be

equivalently formulated in the following way:

(P2) minimize 6, subject to (ax) - 6{hx) < 0, for all x € X.

Let 6* denote the miTiiTT-mm we are looking for. Let

h(6) = max{(ax) - S(bx)}. (1)

Function. h(6) is convex, piecewise linear, decreasing, and S" is its only root. We assume

that we can maximize any linear function over X, so for any 6 we can compute ,h(6) and

x € X such that (a — 6b)x = h(S). Let A be an algorithm which does such computation

and let T be its running time. Having such an algorithm enables us to compute 6' with

Newton's method. We show that Newton's method finds 6" in 0(p4) iterations. This

bound on the number of iterations is independent of the complexity of the class of systems

which X belongs to, and independent of the complexity of computing h{6). One iteration

is dominated by algorithm .4., so the overall time is 0(p4T).

The other way of computing 6" is Megiddo's parametric search method [8]. This ap-

proach gives an algorithm with running time O^T'q^T'logQ + Q)), where T' and T'q refer

to the sequential running time and the parallel running time on Q processors of computing

the sign of h{6) for a given 6. Thus an efficient algorithm for an LFCO problem can be

obtained if an efficient parallel algorithm for the corresponding nonfractional problem is

available.

If costs and weights are integers from [—U, U], then using the straightforward binary

search we can find in 0(log(pU)) iterations an interval I of length less than l/(pU)2 which

contains 6". One iteration is dominated by computing the sign of h(S) for an appropriate

6. An interval of length less than l/(pU)2 can contain at most one mean-weight cost. The

overall time of this approach is 0(T'log(pU) + T).

In the second part of the paper we consider the minimum maximum arc cost trans-

shipment (MAC) problem, which is the transshipment problem when the maximum of the

arc costs is being minimized. This problem can be reduced to the maximum mean-weight

cut (MWC) problem, which is an LFCO problem. The underlying nonfractional problem

is the standard maximum flow problem. This problem does not have an efficient parallel

algorithm. Nevertheless, up to now, Megiddo's method gave the best known upper bound,

namely Ö(mn3) [8], for the MWC and MAC problems. We show that Newton's method

applied to the MWC problem runs in 0(m) iterations. One iteration is dominated by max-

imum flow computation, so the overall running time is Ö(m2n). The same bound holds for

the MAC problem.

2 Newton's Method for Linear Fractional Combinatorial
Optimization

The following is Newton's method for computing the root 6* of h(S) (defined in (1)).

Figure 1: Newton's method for solving h(6) = 0

Let 8 < 8' be the current estimation to 8*. Initially 8 = 0. (Observe that our as-

sumptions guarantee 8" > 0.) During one iteration we compute h{6) and x € X such that

h{8) = (ax) - £(bx), i.e., we maximize linear function (a - £b)x over X. This is done by

algorithm A. If h(6) = 0, then 8' = 8 and the algorithm terminates. Otherwise we compute

the next estimation 8 +- ax/bx, the mean-weight cost of x, and go to the next iteration.

The process is illustrated in Figure 1.

Let Si be the value of 8 at the beginning of ith iteration, and X;, Hi, and Bi, be x,

(a - 8ib)±, and bx from this iteration.

Si = (a-^b)x,- = max{(a - $ib)x | x € X},

Bi bxj,
ax£
bx,'

and it can be easily derived that
/? £.-Hi
Oi+l - Oi• - — (2)

The following lemma indicates fast convergence of the above algorithm.

Lemma 1

^ + %^<1. (3)

Proof. Vector xt- maximizes (a - 6,b)x, so

(a - 6;b)xi > (a - £tb)x;+1.

Therefore

Hi = (a-fcb)x; > (a-5tb)xi+i

= (a - £+ib)xi+i + (6i+1 - £)bxi+1

This implies Inequality (3). ■

The above lemma gives immediately the following bound on the number of iterations.

Theorem 1 If in an LFCO problem the coordinates of vectors a and b are integers from

[—U,U], then Newton's method finds the optimum in 0(log{pU)) iterations.

Proof. Inequality (3) implies
Hj+iBj+i 1 , »

StBi ~ 4* K}

For any i for which JB-» > 0,

{pUf > HiBi > ±. (5)

The second inequality holds because

*'- b^x ~pU-

Inequalities (4) and (5) imply the bound of 0(log(pU)) on the number of iteration. ■

The special case with uniform weights, i.e., b = (1,1,..., 1), is of independent interest.

The task here is to find the maximum, mean cost of a structure. Sequence (Bi), excluding the

last iteration, is decreasing. This implies the following strongly polynomial bound, which

was observed by Karzanov [11] and, in the context of the maximum mean cut problem, by

McCormick and Ervolina [7].

Theorem 2 If the weights are uniform, then Newton's method runs in at mostp+1 iterations.

Now we prove a strongly polynomial bound on the number of iterations for the general

case, when both costs and weights can be arbitrary real numbers. The intuition behind

the analysis is as follows. Lemma 1 suggests that there are some sequences related to the

rate of convergence of the method, which tend to zero at least geometrically fast. The

elements of these sequences are obtained from only 2p numbers, the costs ai,a2,.. .,Op,

and the weights bi,b2 ■■■,bp, using only 0(p) additions/subtractions and at most one or

two multiplications/divisions. We show that because of this limiting use of arithmetical

operations, the lengths of such sequences cannot be too big.

To expand this intuition a little bit, let us assume that Bi+i/Bi < 1 - a, for some

positive constant a, that is sequence (Bi) tends to zero at least geometrically fast. Each

element of sequence (Bi) is a sum of different elements from {61, b2,..., bp}. Let us further

assume that h > b2 > ■■■ > bp > 0. Obviously 2?i < pb-y. Since (Bi) decreases at least

geometrically, for some I = O(logp), Bi <b\. It means that 61 is not a term in Bi, nor is

it in Bi, for any i > I. Bi < (p - l)b2, and the next O(logp) elements of (£,-) exclude b2,

then fe3, and so on. Therefore the length of sequence (Bi) is O(plogp).

There are two reasons why the general case is more complicated. First, we have to deal

with positive and negative numbers. Even if both costs and weights are positive, negative

numbers appear because subtractions are used in forming the elements of (Hi). Second, if

(Bi) does not decrease fast enough, then we have to use sequence (.Hi), whose elements are

not just subsums of some given set of numbers. The following lemma is our tool to deal

with both positive and negative numbers. Here the coordinates of vector c are numbers

which are used to form sums, and (y*c) is a sequence of such sums.

Lemma 2 Let c € Rp and yk € {0,1}P\{0}, for k = 1,2,..., q, be such that

|y*+ic| < pj|y*c|, for* = l,2,...,g-l. (6)

Then q < p.

Proof. Assume that q > p. Let Y denote the matrix whose rows are vectors yi, y2, ...,

yg. Since q > p, there is a nonzero vector 2 £ R9 such that zY = 0. Moreover, z can be

chosen in such a way that all its coordinates are rational numbers with denominators and

enumerators being the determinants of submatrices of Y. Let z = (21,22,..., zq) be such a

vector. Thus, for t = 1,2,..., q, either z, = 0 or

±-<\zi\<P*. (7)

We have

0 = zYc = zi(yic) + 22(y2<0 + • • • + zg{yqc).

But this is not possible, because the nonzero terms on the right side cannot cancel. Since

yq ^ 0, so for some 1 < i < q - 1, z; # 0, and z;y;c # 0. If 1 < i < j < q and z;y;c ^ 0,

then (6) and (7) imply

k;(y;c)| < *>2pN^|y,-c| = ^l*(y.-e)|.

Lemma 3 There are at most 0(j?2logp) iterations k such that Bk+i < f-^fc-

Proof. Consider the sequence of all iterations k such that Bk+i < \Bk. Take from this

sequence every Zth iteration, where Z = |"6plogp|. Let they be iterations ti,t2,...,iq. For

1 < * < ?- 1>

Lemma 2 implies q <p, which implies 0(p2 logp) bound on the number of iterations k such

that Bk+1 < \Bk. ■

Lemma 4 There are at most 0(j>2logp) consecutive iterations k such that Bk+i > f-Bjfe-

Proof. Consider a sequence of consecutive iterations i, i + 1, ..., j, such that for each

t < Jb < j - 1:

Bk+i > \BU. (8)

This and Inequality (3) imply that for each i < k < j - 1:

Ek+i < \Hk.

Therefore

6k+i - 6k+1 = §gi < |g = |(*fc+1 - «*)■ (9)

Let Z = [3plogp| + 1. Consider the sequence of every Zth iteration out of iterations i,

i + 1, • •., J- Let they be iterations *i,t2,.. -,t,. We show that Lemma 2 can be applied

to the sequence (xit_i(-a + £j,b)), where 1 < t < q. This is a sequence of subsums of

££=i(-ar + ^it*r)- First we estimate the rate of convergence of sequence (£»t) to Siq. For

l<Jfc<g-2,

6

< (frt+1+i - sik+1)(i + \ + \ + • - • + aft-^-i))

< £(*.-**)•
The inequalities in the second and fourth lines follow from Inequality (9).

Recall that 6i+1 = (axi)/(bx;), so for k = 1,2,..., q,

Xit_a(-a+ 5i?b) = (fc, - fcjbx^-!.

Put

c = -a + 6i,b,

yfc = Xit_i} for k = l,2,...,q.

We have for Jfe = 1,2,..., q - 1,

y*+iC = Jifc+1-i(*it-*it+1)<Bit_i^(ffit-«ifc) = ^yfcC.

Thus vectors c and y*'s satisfy the conditions of Lemma 2, so q < p. It means that there

are at most O(p2logp) consecutive iterations for which Inequality (8) holds. ■

Lemmas 3 and 4 immediately imply the following strongly polynomial bound on the

number of iterations.

Theorem 3 Newton's method applied to an LFCO problem finds the optimum in O(p4\og2p)

iterations.

If the weights are nonnegative, then there are at most O(plogp) iterations with Bk+i <

l-Bfc. Therefore in such a case Newton's method works in 0{j>3) iterations. '

3 Minimum maximum arc cost transshipment problem

A (transshipment) network G = {V,E,u,d) is a digraph (V,E) with a capacity function

u : £ —* K U {+oo}, and a demand function d : V —► B. such that J^vev d(v) = °- We

assume, for convenience in presentation but without losing generality, that E is symmetric

and u is nonnegative. Negative d(v) means that v is a source - a vertex with supply, positive

d(v) means that v is a sink - a vertex with demand. Let n and m denote the cardinality of

V and the half of the cardinality of E, respectively. We assume m > n.

We adopt the convention that any function <p : F —► R is extended to all finite subsets

of F: <p(A) = T,x€A >p{x). Thus if A C V, then d(A) = Y,veA d(v)> wilich is the net demand

in A. The total demand in G is d(G) = J2v:d(v)>o <*(*>) •

A pseudoflow in G is an antisymmetric function / : E —> R, i.e., for every (v, w) £ E,

f(v,w) = —f(va,v). A pseudoflow / creates excesses at vertices: the excess at vertex v is

e*(v) = "Z,w.twv)<:Ef(w>v)- *f e*(v) — ^(v)' t^en we say t^iat Pseudoflow / satisfies the

demand at vertex v. A flow is a pseudoflow / that meets capacity constraints and does not

increase demands: f{w,v) < u(w,v), for every arc (w,v) £ E, and e*(v) is between 0 and

d(v), for every v € V. A transshipment is a flow which satisfies demands at all vertices.

G is feasible if there is a transshipment in G. The transshipment feasibility problem is the

problem of verifying if a given network G is feasible. For a pseudoflow / in G, the residual

network Gf is (V,E,uf = u— f,d* = d- ef). Ga denotes G with the capacity function

changed to fi. Thus G{ = (V, E,üf, df).

If S and T partition V, then cut (5, T) in G is the set of arcs (v, w) of E such that

v e S and tr € T. The capacity and the «urpZtts of a cut (5, T) are «(5, JT) = ~E,e€(s,T) uie)

and 5urpJtM(S,T) = d(T) - u(5}T)5 respectively. Our definition of surplus(S,T) is the

same as in [7] the definition of V(T, S), the value of a cut (r, 5). It is easy to verify that

the surplus of a cut is the same in G as in Gi for any flow /. A positive surplus means

that the cut blocks the flow. Any flow must leave at S at least the amount surplus(S,T)

of the commodity, which is demanded at T. Let mean(S,T) = surplus(S,T)/\(S,T)\

be the mean surplus of (5, T) in G, and, if a weight function b : E —► R is specified,

mean.w(S, T) = surplus{S, T)/b(S, T) be the mean-weight surplus of (5, T) in G.

The minimum cost transshipment problem, which is often refer to as the transshipment

problem, is to compute for a given network G and a given cost function c : E —► R, the

mfnJTTittTn cost of a transshipment in G, when the cost of transshipment / is Y,e€E /(e)c(e)-

This problem has been well studied, often as the minimum cost circulation problem (these

problems are reducible to each other in linear time). Fastest currently known algorithms for

this problem can be found in [1, 2, 4, 9, 12]. In this paper we are interested in the problem

of minimizing the maximum arc cost instead of the sum of arc costs. Here is the list of the

transshipment problems we consider. They are closely related to each other. We assume

that cost functions and weight functions are nonnegative.

Minimum maximum arc cost transshipment problem (MAC)

A transshipment network G and a cost function c : E —* R are given. Compute the

TniniTTinTTi of the maximum arc cost over all transshipments in G, that is, compute

6" = min{max{/(e)c(e)} | /is a transshipment inG}.

Minimum maximum capacity violation cost transshipment problem (MCVC)

A transshipment network G is given, which might not be feasible. The objective is to

obtain a feasible network by increasing the capacities. A weight function 6 : E —► R

is given, which specifies by how much the capacities of the arcs can be increased in

unit cost. It means that the cost of increase of the capacity of arc c from u(e) to

u(e\ -i- £ is £/6(e). Compute the TnrniTmrm of the maximum cost of increasing the

capacity of an arc, that is, compute

6" = min{5 > 0 | Gu+«,is feasible}.

Minimum maximum capacity violation transshipment problem (MCV)

This is the MCVC problem with the uniform weight function: 6 = 1.

Maximum mean-weight cut problem (MWC)

A transshipment network G and a weight function b : E —► R are given. Compute

the maximum mean-weight surplus over all cuts with nonnegative surplus, that is,

compute

S~ = max{*"rf,^' ^ | (5, T) cut in G with nonnegative surplus}.
6(5, T)

Maximum mean cut problem (MC)

This is the MWC problem with the uniform weight function. It means that we are

asked to find

6* = max{ 5tt7>^"^ ' ' | (5, T) cut in G with nonnegative surplus}.
\{S, T)\

A cut with the maximum nonnegative mean-weight surplus and a cut with the maxi-

mum nonnegative mean surplus we will call a maximum mean-weight (surplus) cut and a

maximum mean (surplus) cut, respectively. We formulated the above problems in a way

that the miniTmiTn or the maximum value is sought, not the corresponding optimal flow or

cut. We did it only for convenience in further presentation. The algorithm we discuss in

the next section and actually all other algorithms for the above problems compute both the

optimal value and the corresponding optimal structure (transshipment or cut).

As mentioned in [8], the problem of minimizing the maximum arc cost appears, for

example, when it is desirable not to use an arc at its full capacity. Each arc e has some

safety level 5(e) and the ratio f{e)/s(e) is sought to be minimized, with the general objective

of getting the maximal ratio as small as possible. The MAC problem captures also the

following dynamic situation. The network is in continuous activity, that is, the sources

continuously keep producing commodity and sending it to the sinks. The objective is to

maximize the throughput. More formally, suppose l/c(e) is the amount of the commodity

which can be shipped through arc e in unit time. It means that the shipment of /(e) units

through e takes /(e)e(e) time. Further suppose that every source s generates -d(s) units

of the commodity every r units of time and sends it out, and every sink t has to get d(t)

units of the commodity every r units of time. Then the optimal 6" in the formulation of

the MAC problem is equal to the minimal possible r such that no congestion arises at any

vertex.

Before discussing the previous work relevant to the problems in which we are interested,

we first establish relation between them.

The value of a flow f is the amount by which / decreases the total demand: value(f) =

Dt>:d(t>)>o eHv)- -A- maximum flow in G is a flow in G of the maximum value. The maximum

flow problem is the problem of finding a maximum flow in a given transshipment network.

A maximum (surplus) cut is a cut with the maximum nonnegative surplus. The maximum

(surplus) cut problem is the problem of finding a maximum cut in a given transshipment

network.

The transshipment feasibility problem, the maximum flow problem and the maximum

cut problem are the nonfractional/nonparametric problems that correspond to our frac-

tional/parametric problems. The transshipment feasibility problem and the maximum flow

problem can be easily reduced to the standard maximum flow problem. A maximum flow

in a transshipment network can be used to find a maximum surplus cut, in a similar way as

a maximum flow in a standard maximum flow network can be used to identify a minimum

capacity cut. Let TMF(»,"0 denote 0(M(n,m)), where M(n,m) is the time complex-

10

ity of the standard maximum flow problem. The transshipment feasibility, the maximum

flow in a transshipment network, and the maximum surplus cut problems can be solved in

TUF{n,m) time. Currently it is known that TuF(n,m) = 0(nm\og(n2/m)) [3], and slightly

better bounds exist for dense graphs.

Let for a transshipment problem P, Tp(n,m) denote its time complexity. The following

theorem shows close relation between the MAC problem and the MCVC problem.

Theorem 4

1. TMcvc(n, m) < 0{m) + TMACC«, 2m).

2. TuAc{n,m) < O(mlogm) + rMF(n,m)0(logm) + Tucvc(n,rn).

Proof.

1. For a given instance I of the MCVC problem construct an instance V of the MAC

problem in the following way. Replace each arc c in I with two parallel arcs ea and

e2. Put u'(ca) = u(e), e'(ei) = 0, u'(e2) = +oo, c'(e2) = l/6(e). The demand function

in V is the same as in I. A solution (transshipment) to V gives in the natural way

the solution to I.

2. Let S" be the solution to the given instance I of the MAC problem. It is easy to see

that 6" < 6 if and only if GminK*/e} is feasible. Therefore

S" = min{£ > 0 | GmjnCu.s/c} *s feasible}.

To get an instance of the MCVC problem, it is enough to know for each arc c, if

u{e) is essential, i.e., if «(e) < S'/c(e). We sort the list (u(e)c(e) | e G E} and using

binary search we find the position of S" in it. This takes TMF(n,m)0(logm) time.

Now we construct an instance V of the MCVC problem. The underlying graph and

the demand function remain without changes. The capacities and weights are defined

as follows.
f„'M^-lWe)'0) if «(e)c(e)<^,
(tt(e),6(e)) - | (0jl/c(e)) if u(e)c(e) > r.

6*, the solution to 7, is also the solution to I'.

11

Let meanjws(S, T) denote the mean-weight surplus of (S, T) in Gu+sb- Then

meanjws(S,T) = meanjw(S,T) - 6.

It means that the maximum meanjw(S, T) is equal to the minimum S for which Gu+sb does

not contain cuts with positive surplus. Therefore the following theorem implies that the

MCVC problem and the MWC problem are equivalent (and so are MCV and MC), i.e.,

min{£ > 0\Gu+sb is feasible} =

max{mean.w(S, T) | (5, T) cut in G with nonnegative surplus}.

Theorem 5 [5] G is feasible iff there is no cut in G with positive surplus.

The MWC problem is an LFCO problem. ^ C {0,!}"+"» corresponds to the set of all

cuts in G. Vector x € XG represents cut (S, T) such that for 1 < i < n, x,- = 1 iff v» € T,

and for 1 < j < m, zn+y = 1 iff tj € (5, T), where Vi is the tth vertex and tj is the jth arc.

Vector a from the formulation of an LFCO problem is here (d, -u), where d and u are the

vector representations of functions d and u. If x represents (5, T), then ax and bx are now

surplus(S,T) and b{S,T).

Megiddo [8] showed how to solve the MAC problem with his parametric search method.

This method gives an 0{n3m) running time and can give a better time only if a break-

through in parallel maximum flow computation is achieved. Binary search solves MAC with

integral data in 0{T^^{n,m)\o%{riU)) time. More is known about the case with uniform

weights. McCormick and Ervolina [7] proposed an algorithm for computing a maximum

mean cut. This algorithm is essentially an application of Newton's method. They showed

an 0[m) bound on the number of iterations (see Theorem 2). One iteration is dominated

by maximum flow computation. We were able to prove that the number of iterations in

this algorithm is in fact 0(n) [10]5 so the time complexity of MC, as well as MCV and

MAC with uniform costs, is Ö(n2m). For these problems the bound 0{TtsF{n,m)\og(nU))

can be improved to 0(nmlog(nU)) by using approximate maximum flow computation in

connection with either Newton's method [10] or binary search [6].

In the next section we prove an 0{m) bound on the number of iterations in Newton's

method applied to the MCVC problem. This implies an 0(TMF(«, m)m) = 0{m2n) bound

on the time complexity of MCVC, MAC and MWC.

12

4 Newton's method for the MCVC problem

A transshipment network G and a (nonnegative) weight function b are given. We assume

that G is not feasible. Gs stands for Gu+sb, and generally subscript 6 indicates that the

underlying network is Gu+sb- We want to find

S' = min{£ | G^is feasible},

which, as mentioned in the previous section, is equal to

max{mean.w(S, T) | (5, T) cut in G }.

The function h(6) used in the discussion of a general LFCO problem in Section 1 is now

h{5) = msx{surpluss(S, T) | (S, T) cut in G }.

h(6) is also equal to the total demand left in G{, where / is a maximum flow in Gs-

We describe the way Newton's method finds 6", the root of h(6). Let 6 < S* be the

current (under)estimation of 6*. Initially 6 = 0. During one iteration we find a maximum

cut (5, T) in Gj. This is done by computing a maximum flow / in Gg. If the surplus of

(5, T) is zero, i.e., if / is a transshipment, then 6* = 6 and algorithm terminates. Otherwise

we compute the next estimation S = mean_tü(5, T) and go to the next iteration. Moving to

the next estimation should be seen as increasing the capacity so that the surplus of (5, T)

decreases to zero.

For any flow / in G, the surpluses of cuts are the same in G as in G*. It means that

in the current iteration we can perform computation on any residual network of G§ instead

of on Gi itself. In the analysis we assume that the network in the current iteration is Gj,

where / is the sum of the maximum flows computed in all previous iterations. It means

that / is a maximum flow in Gg', where 6' is 6 from the previous iteration.

Let 6{ be 6 at the beginning of iteration:', and (Si, Ti) be the cut found in this iteration.

Bi, and Hi from Section 2 have here the following meaning.

Bi = b(Si,Ti),

Hi = h{6i) = surplus(Si,Ti) - 6ib(Si,Ti).

Let fi be the sum of the flows computed through iteration t. Flow ft is a maximum flow in

Gg{. Si is the total demand in G^*.

13

Theorem 1 implies that if the capacities and the weights are integers from [—U,U],

then the algorithm runs in 0(log(nU)) iterations. The weights are nonnegative, so the

remark after Theorem 3 implies the strongly polynomial bound of Ö(m?) on the number of

iterations. In this section we show an 0(m) bound on the number of iterations.

An arc e is unessential in G, if its capacity is greater than the total demand or its

weight is greater than the weight of a maximum surplus cut. When we use expression "e is

unessential" in the context of the algorithm, we mean that e is unessential in the current

network. If an arc is unessential in G\, for some 6 > and flow / in G&, then it is unessential

in Ggtf!, for any 6 > 0 and any flow /' in Gg+S,: Increasing 6 increases the capacity of

an arc and decreases the maximum surplus of a cut; augmenting with a flow may decrease

the capacity of an arc but by not more than it decreases the total demand. Therefore if

at some point in the algorithm some arc is unessential, it remains unessential through the

end of the computation. An unessential arc cannot belong to a maximum surplus cut. We

showthat few iterations are enough to make a new arc unessential.

Lemma 5 From the iteration i + 2 on, the (current) capacity of cut (Si,Ti) is greater than

Ei+%.

Proof. At the beginning of iteration t +1 the capacity of cut (Si, TJ is equal, by definition,

to Hi, the remaining total demand. In iteration i + 1 the capacity of each cut decreases by

at most Hi - Hi+i and then increases by (Ei+i/Bi+i)B, where B is the weight of this cut.

It means that in iteration f + 1 the capacity of cut (Si,Ti) first decreases but does not go

below Ei+i. Then it increases by more than Ei+i, because its weight is greater than B»+i.

Therefore at the end of iteration * + 1 the capacity of {Si,Ti) is greater than 2Ei+i. From

now on the capacity of (Si,Ti) is always greater than Ei+1, because the total decrease of

this capacity cannot be greater than the total demand left after iteration t + 1, which is

Hi+i.

Putting the above argument in a more formal way we get the following bound on the

capacity of (Si, T») at the beginning of iteration i+l, where / > 2. According to our notation,

the capacity function at the beginning of iteration t + / is u$**j~l.

tt&J-^.Ti) > u}i(Si,Ti) + (6i+i-6i)Bi-(Ei-Ei+i.1) .

= (6i+i - 6i+1)Bi + (Si+1 - 6i)Bi - Hi + ffi+i-i

= (h+i — £t+i)-B» + Ei+i-i

> (f>i+2 — &i+i)Bi

14

> (£»'+2 — 6i+i)Bi+i

= -STt+i •

We first prove an O(mlogm) bound to show the main idea. To prove an 0(m) bound,

we will need a finer accounting strategy.

Theorem 6 Newton's method solves MCVC in O(mlogm) iterations.

Proof. We use Inequality (4) to show that after O(logm) iterations a new axe becomes

unessential. Let the current iteration be the ith one. Let I = [logmj + 2. It follows from

Inequality (4) that
77.. .B. . ■ s _

,2 Ei+iBi+l < ^Ei+1Bi+1. (10)

If Bi+i < ±Bi} then there exists an arc e € (5t-,r<) such that b(e) > Bi+i. Such an arc

is unessential from iteration i + / on.

If Bi+i > ^Bi, then Bi+i > £J?;+i as well, and Inequality (10) implies that Ei+i <

—Ei+i. Lemma 5 says that the capacity of (Si, T;) at the beginning of iteration i + 1 + 1

is greater than Ei+i, so its greater than mEi+i. It means that the capacity of some arc in

(Si,Ti) in G£
+
' (which is the network at the beginning of iteration t + / + 1) is greater

than Ei+i, the total demand in G^+l . Such an arc is unessential from iteration i + / + 1

on. ■

Theorem 7 Newton's method solves MCVC in 0(m) iterations.

Proof. Lemma 1 implies that for each iteration t,

Bi <- (11)
Bi-i ~ 2

or
Hi <-. (12)

Ei-i ~ 2
We first bound the number of iterations t for which (11) holds. Let (/*»)*_! be the sequence

of jBi's in these iterations and (aj)^=1 be the positive 6/s arranged in nonincreasing order.

It is easy to see that sequences (aj)?=1 and (/*i)Li satisfy the conditions of Lemma 6, so

q < p < m.

Now we bound the number of iterations t for which (12) holds. Here the argument is

more involved, because JT;'s are not just subsums of a set of m elements. They are related

to the current demands and capacities, which vary from iteration to iteration.

15

To avoid towering subscripts, we renumber iterations taking into an account only itera-

tions with (12). It means that now iteration i is what used to be the ith iteration with (12).

All subscripts refer to the new numbering.

We assign iterations to arcs in such a way that at most 5 iterations are assigned to one

arc. We stop the process of assigning when all but at most q + 2 = [log m] + 5 iterations

have been assigned. Assume that there are still at least q + 3 unassigned iterations. Let

iteration i be the first among them. Consider cut (Si,Ti). Let p be its cardinality. Let for

1 <j <p and 1 < I < q, fi,j be the capacity of the j'th arc in (Si, T{) (assuming any order

on the arcs in (Si, Tj)) at the beginning of iteration i + l + 2. It follows from Lemma 5 that

for each 1 < I < q,

$>,; >#<+:• (13)

For each arc, the difference between its capacities at the beginning of iterations k + 1 and

k + 2 is not greater than the total demand at the beginning of iteration k + 1, which is Ek-

It means that

hij-fi+llj\<3i+w<^Ei+1. (14)

The definition of q, (13), and (14) imply that matrix (nj/Ei+i) satisfies the conditions of

Lemma 7. It means that there exists k > 3 such that at least k - 2 elements from 7^1, 7jt,2,

..., 7jtiP are greater than l/2kEi+1 > Ei+k+i- Therefore the arcs corresponding to these

k - 2 elements are unessential at iteration t" + k + 2. We assign iterations t through i + k + l

to these arcs. Notice that none of these arcs was unessential at iteration i, so none of the

previous iteration was assign to any of them.

During this process of assigning iterations to arcs, no more than 5 iterations are assign

to one arc, and no more than O(logm) iterations are left unassigned. We conclude that

there are at most 5m + O(logm) iterations for which (12) holds. ■

Lemma 6 Let ai > Q2 > • • • > Op > 0 and Hi > \ii > ... > fiq > 0 be such that

1. fii+l<\fii, for i= 1,2,...,q-I,

2. /t? > ap-

3- Vn. < T,iaj I ai ^ Mi), for t = 1,2,.. .,g.

Then q < p.

16

Proof. Let äj = a, + CLJ+I H 1- ap. Condition 3 implies that fix < ä\. Thus, to prove

q < p, it is sufficient to show that each of the intervals (0,äp], (öp,Qp_i], ..., (Q3,Q2],

(ä2,äi] contains at most one element from (/*;). Condition 2 implies that only the last

element can be in (0, op]. Let for some l<j"<j>-landl<i<ff-l,/ü€ (ä,-+i, ey].

We show that fii+i < ö,-+i.

If öj+i > \äj, then
1 1

If äj+i < \äj, then

The above inequality and Condition 3 imply pi+i < äj+i. ■

Lemma 7 Let (aij) be a q x p matrix such that

1. $ > log?+3,

2. the sum of each row is not less than 1,

3. loj+ij - ctij\ < 1/2% for 1 < t < q and 1 < j < p.

If aij > 1/2', then we call this and all subsequent elements in column j good elements. There

is k > 3 such that row ife contains at least k - 2 good elements.

Proof. Condition 3 implies that if 1 < t' < i" < q and 1 < j < p, then

If aij is the first good element in column 3 and t > 2, then

1111 ,1fix
Oij < ai-ij + gin < jjzr + 2iZT = 2i=2' l '

Assume that for all k > 3, row Jfe contains at most k - 3 good elements. We will get

contradiction by showing that the sum of the last row is less than 1. Let j'1,7'2, • • -,Ji be

the indices of all columns with at least one good element. Let a^j",»«^.»*-••■>aiiM ^e

the first good elements in these columns. Let jlt j2,■ • • ,ji be ordered in such a way that

tx < i2 < • • • < t'j. Row ifc contains at least k good elements (a^, &ik,J2 J • • • > ^tä)
S0

«fc > * + 3. (17)

17

The sum of the last row is at most

p-l

< £ + to* + ^) + ■ • • + K,* + 2iPi)
l l l . l l

- 8 + ^2ii-2 + 2*»-1' + " ' + ^'-2 + 2i'"1 '
1 , (1 1

= _ + 6 —- + 1- —
8 \2*» 2*'

<i.

The first inequality follows from (15), the second one from (16) and Condition 1, and the

third one from (17). ■

5 Concluding Remarks

We proved that Newton's method solves a linear fractional combinatorial optimization prob-

lem in a strongly polynomial number of iterations. We did it by combining the fast con-

vergence of the method with the limiting way the numbers involved in an LFCO problem

can be spread along the real line. That "limiting spread" follows from the fact that these

numbers are obtained using only few multiplications/divisions. Observe that for example

the generalized flow problem does not have this property, and we do not know how our type

of analysis could be useful in such a case.

We showed that Newton's method gives an 0(m) iteration algorithm for the transship-

ment problem when the maximum arc cost is minimized. One iteration in this algorithm is

dominated by the maximum flow computation, so the overall running time is Ö(m2n). This

improves the upper bound achieved with Megiddo's parametric search. We believe that the

bound on the number of iterations is 0(n), but we have not been able to prove it.

We may have a transshipment network with two cost functions, one related to minimizing

the sum of arc costs and the other to minimizing the maximum arc cost. In the same O (m2n)

time bound we can perform the "double minimization". To minimize the sum of the arc

costs over the transshipments which minimize the maximum arc cost, we first minimize the

maximum arc cost and get in this way additional capacity constraints. Then we minimize

the sum of arc costs taking into an account these additional constraints. To minimize the

maximum arc cost over the transshipments which minimize the sum of arc costs, we first

18

compute a transshipment which minimizes the sum of arc costs, and its dual, and identify

all arcs which have to be saturated in all such transshipments. Then we can minimize the

maximum arc cost of the remaining arcs.

19

References

1] R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding Minimum-
Cost Flows by Double Scaling. Technical Report STAN-CS-88-1227, Department of
Computer Science, Stanford University, 1988.

2] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. Assoc. Comput. Mach., 19:248-264,1972.

3] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem.
J. Assoc. Comput. Mach., 35:921-940,1988.

4] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive
Approximation. Math, of Oper. Res., 15:430-466,1990.

5] A. J. Hoffman. A Generalization of Max Flow - Min Cut. Math. Prog., 6:352-359,
1974.

6] K. Iwano, S. Misono, S. Tezuka, and S. Fujishige. A New Scaling Algorithm for the
Maximum Mean Cut Problem. Unpublished manuscript (To appear in Algorithmica),
1990.

7] S. T. McCormick and T. R. Ervolina. Computing Maximum Mean Cuts. UBC Faculty
of Commerce Working Paper 90-MSC-011,1990.

8] N. Megiddo. Applying Parallel Computation Algorithms in the Design of Serial Algo-
rithms. J. Assoc. Comput. Mach., 30:852-865,1983.

9] J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. In Proc.
20th Annual ACM Symposium on Theory of Computing, pages 377-387,1988.

[10] T. Radzik. Minimizing Capacity Violations in a Transshipment Network. In Proc. 3rd
ACM-SIAM Symposium on Discrete Algorithms, 1992. (To appear).

[11] A. B. Kap3aHOB. O MnHHMajn.Hiix no CpenneMy Becy Pa3pe3ax H IlnKJiax Opu-
eHTHpoBaHHoro rpa<J>a. C6. Ka\ecmeenHue u HpuOAu^ceuHne Memodu EccAe-
doeanua Onepamopuux ypaenenuu, 72-83. JIpocJiaBCKHH Tocy^apcTBeHHufi YHH-

BepcHTei, flpocnaBJi, CCCP, 1985. Title translation: A. V. Karzanov "On minimal
mean cuts and circuits in a digraph," in Methods for Solving Operator Equations,
Yaroslavl, USSR, 1985.

[12] E. A. unHHn,. MeTon. üopaspaHHoro CoKpameHHH HeBraoK H TpaHcnopTHue
3anaHH. C6. HccAedoeanvjr no JlucKpemnou MameMamune. Hayica, MocKBa, 1973.
English transcription: E. A. Dinic, "Metod Porazryadnogo Sokrashcheniya Nevyazok
i Transportnye Zadachi," Issledovaniya po Diskretnoi Matematike, Science, Moscow.
Title translation: The Method of Scaling and Transportation Problems.

20

u
o ^

+* C y OJ

5"SB »
5/5 Q QJ »m

s.- '* Ä

ti £ *• s

"MM
^ i* .5 ©

.2 c u *
^STJ £
22 c3 2 «

Z0.2.S

Reproduced by NTIS
National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:
• Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
• R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:
• The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.
• The Center for the Utilization of Federal Technology - gives you
access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products
and Services Catalog which describes how you can access this U.S. and

foreign Government technology. Call (703) 487-4650 or send this
sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone_

- Your Source to U.S. and Foreign Government
Research and Technology

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Technical Information Service
Springfield, VA 22161 (703) 487-4650

